Add like
Add dislike
Add to saved papers

Waste natural fibers for polymer toughening and biodegradability of epoxy-based polymer composite through toughness and thermal analysis.

Heliyon 2024 March 31
Polymeric materials are being increasingly used to replace many metallic components due to their beneficial properties such as higher strength-to-weight ratio and corrosion resistance. However, the widespread use of polymers poses a risk to the environment as they are not biodegradable. The addition of the waste jute fiber and sawdust fiber as reinforcement to the epoxy resin improved its toughness and induced the biodegradability of the polymer. To examine the effect of the jute fiber and sawdust fiber on biodegradability, the composites were then kept in the drainage system for one year, and the impact energy and fracture morphology of the as-cast and weathered samples were examined using a drop ball impact test and a Charpy impact test. During the weathering period, weight gain was initially observed due to the water absorption by the porous fibers, but after three months, the composites started to lose weight due to the degradation of the fiber by swelling and microbial attacks. Microorganisms in the drainage system used the fiber as their energy source, which resulted in the deterioration of the fiber and the production of CO2 . The production of CO2 was identified by the FTIR analysis of the weathered composite samples. TGA analysis of the as-cast and weathered samples reveals the reduction of the onset thermal degradation temperature of the weathered composites due to the degradation of the composites. The fiber disintegrated through microbial attack and the fiber swelling caused by the absorption of water by jute fiber and sawdust fiber is identified through SEM imaging. The SEM image also reveals the formation of biofilms and the growth of microorganisms at the fibers. A higher growth rate of the microorganisms was observed in the jute fiber composite than in the sawdust fiber composite, as sawdust contains a high level of lignin that protects it from degradation. The results of this study suggest that both sawdust fiber and jute fiber composites induce biodegradability in the epoxy matrix, but jute fiber was more prominent in this regard. The discovery paves the way for using natural fibers in biodegradable polymer composites, reducing polymeric pollution in the environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app