Add like
Add dislike
Add to saved papers

Scutellaria baicalensis Georgi stems and leaves flavonoids promote neuroregeneration and ameliorate memory loss in rats through cAMP-PKA-CREB signaling pathway based on network pharmacology and bioinformatics analysis.

Heliyon 2024 March 31
The aim of this study was to investigate the possible molecular mechanism of Scutellaria baicalensis Georgi stems and leaves flavonoids (SSF) in Alzheimer's disease (AD). The active ingredients of SSF and their targets were identified via network pharmacology and bioinformatics analysis. To test the successful establishment of a rat model of AD by Aβ25-35 combined with RHTGF- β 1 and AlCl3 , the Morris water maze test was used. To intervene, three different doses of SSF were administered. The model group and the control group were included among the parallel groups. A shuttle box test, immunohistochemistry, an enzyme-linked immunosorbent assay, qPCR and Western blot were performed to verify the results. Based on the intersection of genes among AD disease targets, SSF component targets, and differentially expressed genes in the single cell dataset GSE138852 and bulk-seq dataset GSE5281, nine genes related to the action of SSF on AD were identified. SSF have an important anti-AD pathway in the cAMP signaling pathway. SSF can ameliorate the conditioned memory impairment, augment Brdu protein expression and cAMP content; and differentially regulate the mRNA and protein expressions of GPCR, Gαs, AC1, PKA, and VEGF. The cAMP-PKA-CREB pathway in the SSF may mediate the ability of the SSF to ameliorate the composite-induced memory loss and nerve regeneration in rats induced by composite Aβ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app