Add like
Add dislike
Add to saved papers

RACK1 promotes autophagy via the PERK signaling pathway to protect against traumatic brain injury in rats.

AIMS: Neuronal cell death is a primary factor that determines the outcome after traumatic brain injury (TBI). We previously revealed the importance of receptor for activated C kinase (RACK1), a multifunctional scaffold protein, in maintaining neuronal survival after TBI, but the specific mechanism remains unclear. The aim of this study was to explore the mechanism underlying RACK1-mediated neuroprotection in TBI.

METHODS: TBI model was established using controlled cortical impact injury in Sprague-Dawley rats. Genetic intervention and pharmacological inhibition of RACK1 and PERK-autophagy signaling were administrated by intracerebroventricular injection. Western blotting, coimmunoprecipitation, transmission electron microscopy, real-time PCR, immunofluorescence, TUNEL staining, Nissl staining, neurobehavioral tests, and contusion volume assessment were performed.

RESULTS: Endogenous RACK1 was upregulated and correlated with autophagy induction after TBI. RACK1 knockdown markedly inhibited TBI-induced autophagy, whereas RACK1 overexpression exerted the opposite effects. Moreover, RACK1 overexpression ameliorated neuronal apoptosis, neurological deficits, and cortical tissue loss after TBI, and these effects were abrogated by the autophagy inhibitor 3-methyladenine or siRNAs targeting Beclin1 and Atg5. Mechanistically, RACK1 interacted with PERK and activated PERK signaling. Pharmacological and genetic inhibition of the PERK pathway abolished RACK1-induced autophagy after TBI.

CONCLUSION: Our findings indicate that RACK1 protected against TBI-induced neuronal damage partly through autophagy induction by regulating the PERK signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app