Add like
Add dislike
Add to saved papers

Impact of airborne iron oxide nanoparticles on Tillandsia usneoides as a model plant to assess pollution in heavy traffic areas.

Chemosphere 2024 March 25
Due to the increasing evidence of widespread sub-micron pollutants in the atmosphere, the impact of airborne nanoparticles is a subject of great relevance. In particular, the smallest particles are considered the most active and dangerous, having a higher surface/volume ratio. Here we tested the effect of iron oxide (Fe3 O4 ) nanoparticles (IONPs) with different mean diameter and size distribution on the model plant Tillandsia usneoides. Strands were placed in home-built closed boxes and exposed to levels of airborne IONPs reported for the roadside air, i.e. in the order of 107 - 108 items m-2 . Plant growth and other morpho-physiological parameters were monitored for two weeks, showing that exposure to IONPs significantly reduced the length increment of the treated strands with respect to controls. A dose-dependence of this impairing effect was found only for particles with mean size of a few tens of nanometers. These were also proved to be the most toxic at the highest concentration tested. The IONP-induced hamper in growth was correlated with altered concentration of macro- and micronutrients in the plant, while no significant variation in photosynthetic activity was detected in treated samples. Microscopy investigation showed that IONPs could adhere to the plant surface and were preferentially located on the trichome wings. Our results report, for the first time, evidence of the negative effects of airborne IONP pollution on plant health, thus raising concerns about related environmental risks. Future research should be devoted to other plant species and pollutants to assess the impact of airborne pollution on plants and devise suitable attenuation practices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app