Add like
Add dislike
Add to saved papers

Release potential, neglected leakage and reduction countermeasures of COD and Ammonia in MSWLs.

In order to eliminate the impact of the industrial revolution on the environment and improve the water ecological environment, pollutant discharge reduction is imperative. With the acceleration of global discharge reduction process, the huge pollutant release potential and potential environmental effects of municipal solid waste landfills gradually appear, but its release amount and intensity have not been quantitatively revealed. We propose a coupling method of parameter stochastic simulation and physical process model simulation to estimate the hidden leakage of large-scale regional municipal solid waste landfills, and provide a methodology for estimating the hidden leakage of landfills in other countries and even in the whole world by taking China, which has the largest amount of waste generation among developing countries, as an example. Prior to the implementation of stringent construction quality control and assurance management requirements, the average annual leachate generation potential over the entire life cycle of 2600 landfills in China was estimated to be 4.66 × 108  m3 , in which the concentrations of COD and NH3 -N are 5.38 × 102 -6.48 × 104  mg/L and 6.10-3.50 × 103  mg/L, respectively, and the total amounts are 5.21 × 103 -7.81 × 108  t and 8.09 × 102 -6.65 × 107  t, respectively. About 14 % of these pollutants may leak into the environmental media through the landfill liner with the average number of holes of 21.5/ha. For different regions, the overall release, discharge and leakage of COD and NH3 -N in East China account for 35.70 %, 36.68 % and 29.60 % respectively, making it the region with the highest potential for discharge and risk of leakage. Meanwhile, the implementation of mandatory regulations related to leachate generation and control has led to a significant reduction in the leakage of pollutants. For instance, comprehensively detecting and repair of holes in the impermeable liner has reduced the number of holes to 2/ha, resulting in a reduction of >90 % in the leakage of pollutants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app