Add like
Add dislike
Add to saved papers

A T-Cell Inspired Sonoporation System Enhances Low-Dose X-Ray-Mediated Pyroptosis and Radioimmunotherapy Efficacy by Restoring Gasdermin-E Expression.

Advanced Materials 2024 March 25
Genome editing has the potential to improve the unsatisfactory therapeutic effect of antitumor immunotherapy. However, the cell plasma membrane prevents the entry of almost all free genome-manipulation agents. Therefore, a system can be spatiotemporally controlled and can instantly open the cellular membrane to allow the entry of genome-editing agents into target cells is needed. Here, inspired by the ability of T cells to deliver cytotoxins to cancer cells by perforation, an ultrasound (US)-controlled perforation system (UPS) is established to enhance the delivery of free genome-manipulating agents. The UPS can perforate the tumor cell membrane while maintaining cell viability via a controllable lipid peroxidation reaction. In vitro, transmembrane-incapable plasmids can enter cells and perform genome editing with the assistance of UPS, achieving an efficiency of up to 90%. In vivo, the UPS is biodegradable, nonimmunogenic, and tumor-targeting, enabling the puncturing of tumor cells under US. With the application of UPS-assisted genome editing, gasdermin-E expression in 4T1 tumor-bearing mice is successfully restored, which leads to pyroptosis-mediated antitumor immunotherapy via low-dose X-ray irradiation. This study provides new insights for designing a sonoporation system for genome editing. Moreover, the results demonstrate that restoring gasdermin expression by genome editing significantly improves the efficacy of radioimmunotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app