Add like
Add dislike
Add to saved papers

Skeletal Muscle Compliance and Echogenicity in Resistance-Trained and Nontrained Women.

Mongold, SJ, Ricci, AW, Hahn, ME, and Callahan, DM. Skeletal muscle compliance and echogenicity in resistance-trained and nontrained women. J Strength Cond Res 38(4): 671-680, 2024-Noninvasive assessment of muscle mechanical properties in clinical and performance settings tends to rely on manual palpation and emphasizes examination of musculotendinous stiffness. However, measurement standards are highly subjective. The purpose of the study was to compare musculotendinous stiffness in adult women with varying resistance training history while exploring the use of multiple tissue compliance measures. We identified relationships between tissue stiffness and morphology, and tested the hypothesis that combining objective measures of morphology and stiffness would better predict indices of contractile performance. Resistance-trained (RT) women (n = 11) and nontrained (NT) women (n = 10) participated in the study. Muscle echogenicity and morphology were measured using B-mode ultrasonography (US). Vastus lateralis (VL) and patellar tendon (PT) stiffness were measured using digital palpation and US across submaximal isometric contractions. Muscle function was evaluated during maximal voluntary isometric contraction (MVIC) of the knee extensors (KEs). Resistance trained had significantly greater PT stiffness and reduced echogenicity (p < 0.01). Resistance trained also had greater strength per body mass (p < 0.05). Muscle echogenicity was strongly associated with strength and rate of torque development (RTD). Patellar tendon passive stiffness was associated with RTD normalized to MVIC (RTDrel; r = 0.44, p < 0.05). Patellar tendon stiffness was greater in RT young women. No predictive models of muscle function incorporated both stiffness and echogenicity. Because RTDrel is a clinically relevant measure of rehabilitation in athletes and can be predicted by digital palpation, this might represent a practical and objective measure in settings where RTD may not be easy to measure directly.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app