Add like
Add dislike
Add to saved papers

Exome-Based Amino Acid Optimization: A Dietary Strategy to Satisfy Human Nutritional Demands and Enhance Muscle Strength in Breast Tumor Mice Undergoing Chemotherapy.

Breast cancer patients undergoing chemotherapy often experience muscle wasting and weakness, which impact their quality of life. A potential solution lies in customizing amino acid compositions based on exome-derived formulations (ExAAs). The study hypothesized that tailoring dietary amino acids using ExAAs could enhance muscle health. Theoretical amino acid requirements were calculated from the genome's exome region, and a breast cancer mouse model undergoing paclitaxel treatment was established. The mice were supplemented with a cancer-specific nutritional formula (QJS), and the effects of QJS and amino acid-adjusted QJS (adjQJS) were compared. Both formulations improved the nutritional status without compromising tumor growth. Notably, adjQJS significantly enhanced muscle strength compared to QJS (1.51 ± 0.25 vs. 1.30 ± 0.08 fold change, p < 0.05). Transcriptome analysis revealed alterations in complement and coagulation cascades, with an observed upregulation of C3 gene expression in adjQJS. Immune regulation also changed, showing a decrease in B cells and an increase in monocytes in skeletal muscle with adjQJS. Importantly, adjQJS resulted in a notable increase in Alistipes abundance compared to QJS (10.19 ± 0.04% vs. 5.03 ± 1.75%). This study highlights the potential of ExAAs as valuable guide for optimizing amino acid composition in diets for breast cancer patients undergoing chemotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app