Add like
Add dislike
Add to saved papers

Polylactic-Co-glycolic Acid Polymer-Based Nano-Encapsulation Using Recombinant Maltoporin of Aeromonas hydrophila as Potential Vaccine Candidate.

Aquaculture production has been incurring economic losses due to infectious diseases by opportunistic pathogens like Aeromonas hydrophila, a bacterial agent that commonly affects warm water aquacultured fish. Developing an effective vaccine with an appropriate delivery system can elicit an immune response that would be a useful disease management strategy through prevention. The most practical method of administration would be the oral delivery of vaccine developed through nano-biotechnology. In this study, the gene encoding an outer membrane protein, maltoporin, of A. hydrophila, was identified, sequenced, and studied using bioinformatics tools to examine its potential as a vaccine candidate. Using a double emulsion method, the molecule was cloned, over-expressed, and encapsulated in a biodegradable polymer polylactic-co-glycolic acid (PLGA). The immunogenicity of maltoporin was identified through in silico analysis and thus taken up for nanovaccine preparation. The encapsulation efficiency of maltoporin was 63%, with an in vitro release of 55% protein in 48 h. The particle size and morphology of the encapsulated protein exhibited properties that could induce stability and function as an effective carrier system to deliver the antigen to the site and trigger immune response. Results show promise that the PLGA-mediated delivery system could be a potential carrier in developing a fish vaccine via oral administration. They provide insight for developing nanovaccine, since sustained in vitro release and biocompatibility were observed. There is further scope to study the immune response and examine the protective immunity induced by the nanoparticle-encapsulated maltoporin by oral delivery to fish.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app