Add like
Add dislike
Add to saved papers

Blinking Carbon Dots as a Super-resolution Imaging Probe.

Single-molecule localization microscopy (SMLM) emerges as a powerful approach for super-resolution imaging that provides unprecedented resolution at the nanometer length scale. However, the development of appropriate probes with specific photophysical traits and characteristics is crucial for this approach. This study demonstrates two different fluorescent carbon dots (CDs) derived from the same molecular precursor─one emitting in red and the other in green─as a SMLM-based super-resolution imaging probe for different applications with an average localization precision of 20 nm and a resolution of 60 nm. Both the CDs exhibit spontaneous blinking with high photon count and low duty cycle but with different blinking cycles. The red emissive CDs with a lower blinking cycle are ideal for quantitative analysis, whereas green emissive CDs with a higher blinking cycle are ideal for high-resolution imaging. We show that the difference in blinking features is linked to their chemical compositions, and the presence of much denser trap states in red emitting CDs is responsible for the reduction of its blinking cycle. This study shows that CDs can be designed as a potential probe for SMLM-based super-resolution imaging for diverse bioimaging applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app