Add like
Add dislike
Add to saved papers

Green isolation of cellulosic materials from recycled pulp and paper sludge: a Box-Behnken design optimization.

Cellulose was isolated from recycled pulp and paper sludge and used to synthesize cellulose nanocrystals. Response surface methodology and Box-Behnken design model were used to predict, improve, and optimize the cellulose isolation process. The optimal conditions were a reaction temperature of 87.5 °C, 180 min with 4% sodium hydroxide. SEM and TEM results revealed that the isolated cellulose had long rod-like structures of different dimensions than CNCs with short rod-like structures. The crystallinity index from XRD significantly increased from 41.33%, 63.7%, and 75.6% for Kimberly mill pulp sludge (KMRPPS), chemically purified cellulose and cellulose nanocrystals, respectively. The TGA/DTG analysis showed that the isolated cellulosic materials possessed higher thermal stability. FTIR analysis suggested that the chemical structures of cellulose and CNCs were modified by chemical treatment. The cellulose surface was highly hydrophilic compared to the CNCs based on the high water holding capacity of 65.31 ± 0.98% and 83.14 ± 1.22%, respectively. The synthesized cellulosic materials portrayed excellent properties for high-end industrial applications like biomedical engineering, advanced materials, nanotechnology, sustainable packaging, personal care products, environmental remediation, additive manufacturing, etc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app