Add like
Add dislike
Add to saved papers

A metamaterial unit-cell based patch radiator for brain-machine interface technology.

Heliyon 2024 March 31
This paper presents a novel approach to the design of a brain implantable antenna tailored for brain-machine interface (BMI) technology. The design is based on a U-shaped unit-cell metamaterial (MTM), introducing innovative features to enhance performance and address specific challenges associated with BMI applications. The motivation behind the use of the unit-cell structure is to elongate the electric path within the antenna patch, diverging from a reliance on the electrical properties of the MTM. Consequently, the unit cell is connected to an inset-fed transmission line and shorted to the ground. This configuration serves the dual purpose of reducing the size of the antenna and enabling resonance at the 2.442 GHz band within a seven-layer brain phantom. The antenna is designed using a FR-4 substrate (εr = 4.3 and tan δ = 0.025) of 1.5 mm thickness, and it is coated with a biocompatible polyamide material (εr = 4.3 and tan δ = 0.004) of 0.05 mm thickness. The proposed antenna achieves a compact dimension of 20 × 20 × 1.6 mm3 (0.338 × 0.338 × 0.027 λg3) and demonstrates a high bandwidth of 974 MHz with its gain of -14.6 dBi in the 2.442 GHz band. It also exhibits a matched impedance of 49.41-j1.32 Ω in the implantable condition, corresponding to a 50 Ω source impedance. In comparison to a selection of relevant research works, the proposed antenna has a low specific absorption rate (SAR) of 218 W/kg and 68 W/kg at 1g and 10g brain tissue standards, respectively. An antenna prototype has been fabricated and measured for return loss in both free space and in-vivo conditions using sheep's brain. The measurement results are found to be in close agreement with the simulation results for both conditions, showing the practical applicability of the proposed antenna for BMI applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app