Add like
Add dislike
Add to saved papers

Research on lightweight algorithm for gangue detection based on improved Yolov5.

Scientific Reports 2024 March 21
In order to solve the problems of slow detection speed, large number of parameters and large computational volume of deep learning based gangue target detection method, we propose an improved algorithm for gangue target detection based on Yolov5s. First, the lightweight network EfficientVIT is used as the backbone network to increase the target detection speed. Second, C3_Faster replaces the C3 part in the HEAD module, which reduces the model complexity. once again, the 20 × 20 feature map branch in the Neck region is deleted, which reduces the model complexity; thirdly, the CIOU loss function is replaced by the Mpdiou loss function. The introduction of the SE attention mechanism makes the model pay more attention to critical features to improve detection performance. Experimental results show that the improved model size of the coal gang detection algorithm reduces the compression by 77.8%, the number of parameters by 78.3% the computational cost is reduced by 77.8% and the number of frames is reduced by 30.6%, which can be used as a reference for intelligent coal gangue classification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app