Add like
Add dislike
Add to saved papers

Controlled Release of Lysozyme Using Polyvinyl Alcohol-Based Polymeric Nanofibers Generated by Electrospinning.

Polymeric nanofibers generated via electrospinning offer a promising platform for drug delivery systems. This study examines the application of electrospun polyvinyl alcohol (PVA) nanofibers for controlled lysozyme (LZM) delivery. By using various PVA grades, such as the degree of polymerization/hydrolysis, this study investigates their influence on nanofiber morphology and drug-release characteristics. LZM-loaded PVA monolithic nanofibers having 50% drug content exhibit efficient entrapment, wherein rapid dissolution is achieved within 30 min. The initial burst of LZM from the nanofiber was reduced as the LZM content was lowered. The initial dissolution is greatly influenced by the choice of PVA grade used; fully hydrolyzed PVA nanofibers demonstrate controlled release due to the reduced water solubility of PVA. Furthermore, coaxial electrospinning, which creates core-shell nanofibers with polycaprolactone as a controlled release layer, enables sustained LZM release over an extended period. This study confirms a correlation between PVA characteristics and controlled drug release and provides valuable insights into tailoring nanofiber properties for pharmaceutical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app