Add like
Add dislike
Add to saved papers

Feasibility of a Sprague-Dawley Rat Model for Investigating the Effects of Seated Whole-body Vibration.

Vehicular whole-body vibration (WBV) can have long-term adverse effects on human quality of life. Animal models can be used to study pathophysiologic effects of vibration. The goal of this study was to assess animal cooperation and well-being to determine the feasibility of a novel seated rat model for investigating the effects of WBV on biologic systems. Twenty-four male Sprague-Dawley rats were used. The experiment consisted of an acclimation phase, 2 training phases (TrP1 and TrP2), and a testing phase (TeP), including weekly radiographic imaging. During acclimation, rats were housed in pairs in standard cages without vibration. First, experimental (EG; n = 18) and control group 1 (C1; n = 3) rats were placed in a vibration apparatus without vibration, with increasing duration over 5 d during TrP1. EG rats were exposed to vertical random WBV that was increased in magnitude over 5 d during TrP2 until reaching the vibration signal used during TeP (15 min, 0.7 m·s-2 root mean square, unweighted). C1 rats were placed in the vibration apparatus but received no vibration during any phase. Control group 2 (C2; n = 3) rats remained in the home cages. Cooperation was evaluated with regard to rat-apparatus interactions and position compliance. Behavior, weight, and fecal glucocorticoid metabolite concentrations (fGCM) were used to evaluate animal well-being. We observed good cooperation and no behavioral patterns or weight loss between phases, indicating little or no animal stress. The differences in fGCM concentration between groups indicated that the EG rats had lower stress levels than the control rats in all phases except TrP1. Thus, this model elicited little or no stress in the conscious, unrestrained, seated rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app