Add like
Add dislike
Add to saved papers

Enhanced performance of acridine degradation and power generation by microbial fuel cell with g-C 3 N 4 /PANI-DA/CF anode.

Chemosphere 2024 March 19
Microbial fuel cell (MFC) has attracted much attention in treating organic wastewater due to its double functions of degrading organics and generating electricity with microorganisms as biocatalysts. Unfortunately, some organics with biological toxicity such as acridine could inhibit the growth and activity of the microorganisms on the anode so that the double functions of MFC would recede. Enhancing microbial activity by using new biocompatible materials as anodes is prospective to solve problem. A novel anode was achieved by electrodepositing g-C3 N4 sheets to the carbon felt (CF) modified with polyaniline-dopamine composite film, and used to treat wastewater containing acridine for the first time. After the operation of 13 d, MFC loading with the composite anode showed a degradation efficiency of 98.3% in 150 mg L-1 acridine, while that of CF-MFC was 55.8%. Moreover, MFC loading the modified anode obtained a maximum power density of 1976 ± 47 mW m-2 , 140.1% higher than that of CF-MFC. Further analysis revealed that the functional microorganisms associated with acridine degradation such as Achromobacter and Alcaligenes were enriched on the g-C3 N4 /PANI-DA/CF anode. Moreover, the composite anode could improve the activity of microorganisms and elicit them to generate conductive nanowires, which was beneficial to transferring electrons from microbes to anode over long distances, suggesting a promising prospect application in MFC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app