Add like
Add dislike
Add to saved papers

Characterization of the collagen network of human cheek skin using ultrasonic microscopy.

Ultrasonics 2024 March 17
Dermal collagen is the most abundant component of human skin and has a network structure that regulates the mechanical properties of the skin. Therefore, non-invasive characterization of the collagen network would be beneficial for the evaluation of skin conditions. The microscopic substructures of the network, which are individual bundles and fibers, have been optically investigated. However, the macroscopic structure of the collagen network has not been assessed. To evaluate the dermal collagen network, we developed two new indicators, volume filling factor (VFF) and collagen fiber texture (CFT), to analyze three-dimensional echo intensity maps of high-frequency ultrasonic microscopy. By identifying the difference in the elastic modulus components of the dermal layer of facial skin, the density and texture of the collagen network were characterized using VFF and CFT, respectively. These new indicators revealed that the density decreased and the texture became fine with facial age. This study demonstrates that ultrasonic microscopy is useful for investigating skin conditions, paving the way for diagnostic applications in dermatology and aesthetic medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app