Read by QxMD icon Read


Matteo Mazzotti, Marco Miniaci, Ivan Bartoli
A hybrid Finite Element-Plane Wave Expansion method is presented for the band structure analysis of phononic crystal plates with two dimensional lattice that are in contact with acoustic half-spaces. The method enables the computation of both real (propagative) and imaginary (attenuation) components of the Bloch wavenumber at any given frequency. Three numerical applications are presented: a benchmark dispersion analysis for an oil-loaded Titanium isotropic plate, the band structure analysis of a water-loaded Tungsten slab with square cylindrical cavities and a phononic crystal plate composed of Aurum cylinders embedded in an epoxy matrix...
October 14, 2016: Ultrasonics
Md Shifat-E Rabbi, Md Kamrul Hasan
Strain imaging though for solid lesions provides an effective way for determining their pathologic condition by displaying the tissue stiffness contrast, for fluid filled lesions such an imaging is yet an open problem. In this paper, we propose a novel speckle content based strain imaging technique for visualization and classification of fluid filled lesions in elastography after automatic identification of the presence of fluid filled lesions. Speckle content based strain, defined as a function of speckle density based on the relationship between strain and speckle density, gives an indirect strain value for fluid filled lesions...
October 12, 2016: Ultrasonics
Cheng-Lin Yang, Sheng-Dong Zhao, Yue-Sheng Wang
In this paper, experimental evidence of large complete bandgaps in a kind of light-weighted zig-zag lattice structure (ZLS) is presented. Ultrasonic experiments are conducted on the stainless steel slab designed with ZLS to detect the complete bandgaps. Also, the numerical simulations of the experiments by the finite element method are carried out. For comparison, we conduct the same experiments and numerical simulations on the stainless steel slab with straight lattice structure (SLS). Good agreement is obtained between the experimental and numerical results...
October 8, 2016: Ultrasonics
Ashish Kumar Singh, Bo-Yang Chen, Vincent B C Tan, Tong-Earn Tay, Heow-Pueh Lee
Linear ultrasonics methods based on the principle of reflection, transmission, dissipation of sound waves have been traditionally used to detect delaminations in composite structures. However, when the delamination is in very early stages such that it is almost closed, or closed due to a compressive load, the linear methods may fail to detect such cases of delaminations. Nonlinear acoustics/ultrasonics have shown potential to identify damages in composite structures which are difficult to detect using conventional linear ultrasonic methods...
October 8, 2016: Ultrasonics
Yanfeng Shen, Carlos E S Cesnik
This article presents a parallel algorithm to model the nonlinear dynamic interactions between ultrasonic guided waves and fatigue cracks. The Local Interaction Simulation Approach (LISA) is further developed to capture the contact-impact clapping phenomena during the wave crack interactions based on the penalty method. Initial opening and closure distributions are considered to approximate the 3-D rough crack microscopic features. A Coulomb friction model is integrated to capture the stick-slip contact motions between the crack surfaces...
October 6, 2016: Ultrasonics
Jianjian Wang, Pingfa Feng, Jianfu Zhang, Wanchong Cai, Hao Shen
Rotary ultrasonic machining (RUM) is a well-known and efficient method for manufacturing holes in brittle materials. RUM is characterized by improved material removal rates, reduced cutting forces and reduced edge chipping sizes at the hole exit. The aim of this study is to investigate the critical feed rate to guarantee the effectiveness of RUM. Experimental results on quartz glass and sapphire specimens show that when the feed rate exceeds a critical value, the cutting force increases abruptly, accompanied by a significant decrease of ultrasonic amplitude...
October 6, 2016: Ultrasonics
Stephan Gollob, Georg Karl Kocur, Thomas Schumacher, Lassaad Mhamdi, Thomas Vogel
In acoustic emission analysis, common source location algorithms assume, independently of the nature of the propagation medium, a straight (shortest) wave path between the source and the sensors. For heterogeneous media such as concrete, the wave travels in complex paths due to the interaction with the dissimilar material contents and with the possible geometrical and material irregularities present in these media. For instance, cracks and large air voids present in concrete influence significantly the way the wave travels, by causing wave path deviations...
October 4, 2016: Ultrasonics
Negareh Ghasemi, Firuz Zare, Pooya Davari, Mahinda Vilathgamuwa, Arindam Ghosh, Christian Langton, Peter Weber
Several factors can affect performance of an ultrasound system such as quality of excitation signal and ultrasound transducer behaviour. Nonlinearity of piezoelectric ultrasound transducers is a key determinant in designing a proper driving power supply. Although, the nonlinearity of piezoelectric transducer impedance has been discussed in different literatures, the trend of the nonlinearity at different frequencies with respect to excitation voltage variations has not been clearly investigated in practice...
October 1, 2016: Ultrasonics
F G Mitri
The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure...
September 30, 2016: Ultrasonics
Shao-Wen Chung, Cho-Chiang Shih, Chih-Chung Huang
Ultrasound imaging has been extensively used for determining the severity of carotid atherosclerotic stenosis. In particular, the morphological characterization of carotid plaques can be performed for risk stratification of patients. However, using 2D ultrasound imaging for detecting morphological changes in plaques has several limitations. Due to the scan was performed on a single longitudinal cross-section, the selected 2D image is difficult to represent the entire morphology and volume of plaque and vessel lumen...
September 29, 2016: Ultrasonics
Xiaowei Zhang, Zhifeng Tang, Fuzai Lv, Xiaohong Pan
A wavefront analysis indicates that a flexural wave propagates at a helix angle with respect to the pipe axis. The expression for calculation of the helix angle for each flexural mode is given, and the helix angle dispersion curves for flexural modes are calculated. According to the new understanding of flexural guided waves, a helical comb magnetostrictive patch transducer (HCMPT) is proposed for selectively exciting a single predominant flexural torsional guided wave in a pipe and inspecting spiral welded pipes using flexural waves...
September 29, 2016: Ultrasonics
Chunguang Piao, Jin Oh Kim
This paper considers the influence of the different thickness of the piezoelectric discs used in assembly of an ultrasonic sandwich transducer. The transducer consists of two piezoelectric discs with different thickness between 0 and 2.0mm and with same diameter 28mm. Its vibration characteristics of the radial and axial motions were investigated theoretically and experimentally in axisymmetric vibration modes. Theoretically, the differential equations of piezoelectric motions were solved to produce characteristic equations that provided natural frequencies and mode shapes...
September 28, 2016: Ultrasonics
Gian Piero Malfense Fierro, Michele Meo
Recently, there has been high interest in the capabilities of nonlinear ultrasound techniques for damage/defect detection as these techniques have been shown to be quite accurate in imaging some particular type of damage. This paper presents a Constructive Nonlinear Array (CNA) method, for the detection and imaging of material defects/damage in a complex composite stiffened panel. CNA requires the construction of an ultrasound array in a similar manner to standard phased arrays systems, which require multiple transmitting and receiving elements...
September 22, 2016: Ultrasonics
F G Mitri
Hermite-Gaussian (HGl) acoustical-sheets are introduced and their beamforming properties are examined. A general nonparaxial mathematical solution for the incident beam of any order l is derived based on the angular spectrum decomposition in plane waves. The beam-shape coefficients characterizing the incident beam in cylindrical coordinates are expressed in an integral form and computed using the standard numerical integration procedure based on the trapezoidal rule. The analysis is further extended to calculate the longitudinal and transverse acoustic radiation force functions as well as the axial radiation torque function for a viscous fluid cylindrical cross-section submerged in a non-viscous fluid and located arbitrarily in space in the field of the HGl beams in the Rayleigh and resonance (Mie) regimes...
September 20, 2016: Ultrasonics
Yuedong Xie, Zenghua Liu, Liyuan Yin, Jiande Wu, Peng Deng, Wuliang Yin
This paper presents the simulation and experimental study of the radiation pattern of a meander-line-coil EMAT. A wholly analytical method, which involves the coupling of two models: an analytical EM model and an analytical UT model, has been developed to build EMAT models and analyse the Rayleigh waves' beam directivity. For a specific sensor configuration, Lorentz forces are calculated using the EM analytical method, which is adapted from the classic Deeds and Dodd solution. The calculated Lorentz force density are imported to an analytical ultrasonic model as driven point sources, which produce the Rayleigh waves within a layered medium...
September 17, 2016: Ultrasonics
Yuxiang Zhang, Vincent Tournat, Odile Abraham, Olivier Durand, Stéphane Letourneur, Alain Le Duff, Bertrand Lascoup
A nonlinear acoustic method to assess the damage level of a complex medium is discussed herein. Thanks to the highly nonlinear elastic signatures of cracks or, more generally, internal solid contacts, this method is able to distinguish between contributions from linear wave scattering by a heterogeneity and contributions from nonlinear scattering by a crack or unbounded interface. The coda wave interferometry (CWI) technique is applied to reverberated and scattered waves in glass plate samples featuring various levels of damage...
September 17, 2016: Ultrasonics
Nicolas Quaegebeur, Nidhal Bouslama, Maxime Bilodeau, Robin Guitel, Patrice Masson, Ahmed Maslouhi, Philippe Micheau
Validation of guided-wave based systems for Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) under realistic conditions or environment requires complex setups. For this purpose, numerical or theoretical approaches are useful to save time and cost associated with experiential tests. However, the interaction with realistic geometrical (rivets, thickness changes, stiffeners, extrusions) or damage features (fatigue cracks, fillet cracks, delaminations, disbonds) must be accurately captured in order to be representative...
September 14, 2016: Ultrasonics
Yue Zhao, Yi Shen, Adeline Bernard, Christian Cachard, Hervé Liebgott
This article compares four different biopsy needle localization algorithms in both 3D and 4D situations to evaluate their accuracy and execution time. The localization algorithms were: Principle component analysis (PCA), random Hough transform (RHT), parallel integral projection (PIP) and ROI-RK (ROI based RANSAC and Kalman filter). To enhance the contrast of the biopsy needle and background tissue, a line filtering pre-processing step was implemented. To make the PCA, RHT and PIP algorithms comparable with the ROI-RK method, a region of interest (ROI) strategy was added...
September 13, 2016: Ultrasonics
Yali Jia, Xiaobing Wang, Quanhong Liu, Albert Wingnang Leung, Pan Wang, Chuanshan Xu
OBJECTIVES: The aim of the present study is to investigate the effects of sonodynamic action of hypocrellin B on human breast cancer cells and further explore its underlying mechanisms. METHODS: The cell viability of breast cancer MDA-MB-231 cells was examined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Alterations on cell apoptosis, intracellular reactive oxygen species generation (ROS), mitochondrial membrane potential, and DNA fragmentation was analyzed by flow cytometer...
September 13, 2016: Ultrasonics
Julien P Fortineau, François Vander Meulen, Jérôme Fortineau, Guy Feuillard
We propose a method to identify the different echoes of an overlapped ultrasonic signal. This method is based on an iterative algorithm that compares the experimental signal to a realistic dictionary of trial functions and allows identification of one overlapped echo at each iteration. Adding physical parameters to the dictionary such as sample attenuation and ultrasound beam diffraction allows the method to be applied to various materials and sample geometries. Measurements at 500kHz and 5MHz on a ABS material and a copper plate are reported...
September 12, 2016: Ultrasonics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"