Add like
Add dislike
Add to saved papers

In situ fast self-assembled preparation of dandelion-like Cu(OH) 2 @Cu 3 (HHTP) 2 with core-shell heterostructure arrays for electrochemical sensing of formaldehyde in food samples.

Food Chemistry 2024 March 16
Formaldehyde is known to harm the respiratory, nervous, and digestive systems of people. In this paper, a novel dandelion-like electrocatalyst with core-shell heterostructure arrays were fast self-assembled prepared in situ using copper foam (CF) as support substrate and 2,3,6,7,10,11 hexahydroxy-triphenyl (HHTP) as ligand (Cu(OH)2 @Cu3 (HHTP)2 /CF) by a simple two-step hydrothermal reaction. The 1D Cu(OH)2 nanorods "core" and the 2D π-conjugated conducting metal-organic frameworks (Cu3 (HHTP)2 cMOF) "shell" with remote delocalized electrons give the dandelion-like heterogeneous catalysts excellent electrochemical activity such as a large specific surface area, high conductivity and a fast electron transfer rate. The Cu(OH)2 @Cu3 (HHTP)2 /CF exhibited excellent electrocatalytic performance for formaldehyde under alkaline conditions with a linear range of 0.2 μmol/L - 125 μmol/L and 125 μmol/L - 8 mmol/L, a detection limit as low as 15.9 nmol/L (S/N = 3), as well as good accuracy, consistency, and durability, and it effectively identified FA in food.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app