Add like
Add dislike
Add to saved papers

2D Air-Stable Nonlayered Ferrimagnetic FeCr 2 S 4 Crystals Synthesized via Chemical Vapor Deposition.

Advanced Materials 2024 March 21
The discovery of intrinsic 2D magnetic materials has opened up new opportunities for exploring magnetic properties at atomic layer thicknesses, presenting potential applications in spintronic devices. Here a new 2D ferrimagnetic crystal of nonlayered FeCr2 S4 is synthesized with high phase purity using chemical vapor deposition. The obtained 2D FeCr2 S4 exhibits perpendicular magnetic anisotropy, as evidenced by the out-of-plane/in-plane Hall effect and anisotropic magnetoresistance. Theoretical calculations further elucidate that the observed magnetic anisotropy can be attributed to its surface termination structure. By combining temperature-dependent magneto-transport and polarized Raman spectroscopy characterizations, it is discovered that both the measured Curie temperature and the critical temperature at which a low energy magnon peak disappeared remains constant, regardless of its thickness. Magnetic force microscopy measurements show the flipping process of magnetic domains. The exceptional air-stability of the 2D FeCr2 S4 is also confirmed via Raman spectroscopy and Hall hysteresis loops. The robust anisotropic ferrimagnetism, the thickness-independent of Curie temperature, coupled with excellent air-stability, make 2D FeCr2 S4 crystals highly attractive for future spintronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app