Add like
Add dislike
Add to saved papers

DNM3OS/miR-127-5p/CDH11, activates Wnt3a/β-catenin/LEF-1 pathway to form a positive feedback and aggravate spine facet joint osteoarthritis.

Spinal facet joint osteoarthritis (FJOA) is an OA disease with pathogenesis and progression uncovered. Our present study was performed to elucidate the role of DNM3OS on spinal FJOA. In this study, spine facet joint tissue of patients were collected. In vitro and in vivo models were constructed with SW1353 cells and rats. Hematoxylin and eosin (HE) staining, Safranin O-fast Green, Alcian blue staining, and Tolueine blue O (TBO) staining were employed for histology analyses. Quantitative PCR, western blotting, and Immunofluorescence were performed to evaluate the expression of genes. The levels of inflammatory cytokines were measured by enzyme-linked immunosorbent assay analysis. Cell Counting Kit-8 and flow cytometry were used for cell activity and apoptosis evaluation. The targeting sites between microRNA (miR)-127-5p and cadherin 11 (CDH11) were predicted TargetScan and miRbase database and confirmed by Dual-luciferase reporter assays. CHIP and EMS assay were employed to confirm the binding of LEF1and DNM3OS promoter. Our results showed that DNM3OS was found to upregulated, while miR-127-5p was downregulated in severe FJOA patients and inflammation-induced chondrosarcoma SW1353 cells. DNM3OS reduced cell activity, induced cell apoptosis and extracellular matrix (ECM) degradation by sponging miR-127-5p in vitro . miR-127-5p targeted CDH11 and inhibited wnt3a/β-catenin pathway to regulate OA in vitro . LEF1 promoted DNM3OS transcription to form a positively feedback in activated wnt3a/β-catenin pathway. In vivo rat model also confirmed that DNM3OS aggravated FJOA. In summary, DNM3OS/miR-127-5p/CDH11 enhanced Wnt3a/β-Catenin/LEF-1 pathway to form a positive feedback and aggravate spinal FJOA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app