Add like
Add dislike
Add to saved papers

Evidence for hybridization-driven heteroplasmy maintained across generations in a ricefish endemic to a Wallacean ancient lake.

Biology Letters 2024 March
Heteroplasmy, the presence of multiple mitochondrial DNA (mtDNA) haplotypes within cells of an individual, is caused by mutation or paternal leakage. However, heteroplasmy is usually resolved to homoplasmy within a few generations because of germ-line bottlenecks; therefore, instances of heteroplasmy are limited in nature. Here, we report heteroplasmy in the ricefish species Oryzias matanensis , endemic to Lake Matano, an ancient lake in Sulawesi Island, in which one individual was known to have many heterozygous sites in the mitochondrial NADH dehydrogenase subunit 2 (ND2) gene. In this study, we cloned the ND2 gene for some additional individuals with heterozygous sites and demonstrated that they are truly heteroplasmic. Phylogenetic analysis revealed that the extra haplotype within the heteroplasmic O. matanensis individuals clustered with haplotypes of O. marmoratus , a congeneric species inhabiting adjacent lakes. This indicated that the heteroplasmy originated from paternal leakage due to interspecific hybridization. The extra haplotype was unique and contained two non-synonymous substitutions. These findings demonstrate that this hybridization-driven heteroplasmy was maintained across generations for a long time to the extent that the extra mitochondria evolved within the new host.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app