Add like
Add dislike
Add to saved papers

APbI 3 -A 2 AgBiI 6 Double-Layer Perovskite Film for a Self-Powered and High-Stability X-ray Detector.

The development of lead halide perovskite X-ray detectors has promising applications in medical imaging and security inspection but is hindered by poor long-term stability and drift of the dark current and photocurrent. Herein, we design a (Cs0.05 MA0.65 FA0.3 )PbI3 -(Cs0.1 MA1.3 FA0.6 )AgBiI6 double-layer perovskite film to assemble a self-powered flat-panel X-ray detector. The demonstrated X-ray detector achieves an outstanding self-powered sensitivity of 80 μC Gyair -1 cm-2 under a 0 V bias. More importantly, owing to the inhibition of the phase transition process and ion migration of (Cs0.05 MA0.65 FA0.3 )PbI3 by the (Cs0.1 MA1.3 FA0.6 )AgBiI6 layer, the device exhibits excellent continuous operating stability with a retention rate of 99% dark current and photocurrent over X-ray pulses of up to 4000 s and excellent long-term stability without a loss of the original response current after 150 days in an air environment. The strategy of double-layer perovskites improves the stability and sensitivity of devices, which paves a path for the industrial application of lead halide perovskite X-ray detectors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app