Add like
Add dislike
Add to saved papers

In vitro and in silico studies of the potential cytotoxic, antioxidant, and HMG CoA reductase inhibitory effects of chitin from Indonesia mangrove crab ( Scylla serrata ) shells.

This study aimed to characterize chitin extracted from Indonesia mangrove crab ( Scylla serrata ) shells, as well as to assess its in vitro cytotoxic, antioxidant, and HMG CoA reductase inhibitory potentials. In silico molecular docking, molecular dynamic, and ADMET prediction analyses were also carried out. Chitin was extracted from mangrove crab shells using deproteination and demineralization processes, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) characterization are then performed. The MTT method was further tested in a study of cell viability, while in vitro method was used to assess HMG CoA reductase inhibitory and antioxidant activities. The extracted chitin was found to have a moderate level of cytotoxic and antioxidant activities. In vitro studies showed that it has an IC50 of 36,65 ± 0,082 μg/mL as an HMG CoA reductase inhibitor, and decreased enzyme activity by 68.733 % at 100 μg/mL as a concentration. Furthermore, in the in silico study, chitin showed a strong affinity to several targets, including HMG CoA reductase, HMG synthase, LDL receptor, PPAR-alfa, and HCAR-2 with binding energies of -5.7; -5.8; -3.6; -5.6; -4.6 kcal/mol, respectively. Based on the ADMET properties, it had non-toxic molecules, which were absorbed and distributed across the blood-brain barrier. The molecular dynamics (MD) simulation also showed that it remained stable in the active sites of HMG CoA reductase receptor for 100 ns. These results indicated that chitin from Indonesian mangrove crab shells can be used to develop more potent HMG CoA reductase inhibitor with antioxidant and cytotoxic activities for effective dyslipidemia therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app