Add like
Add dislike
Add to saved papers

Experiment to Demonstrate Pesticide-Induced Antimicrobial Resistance (AMR): An Emerging Health Threat.

Curēus 2024 Februrary
Background Pesticides, including insecticides, herbicides, and fungicides, are essential for global food production, boosting crop yields, and preventing disease transmission. However, their excessive and improper use raises concerns about potential long-term consequences, affecting microbial ecosystems and fostering antimicrobial resistance. Materials and methods The objective of the study was to identify the effect of the pesticide compound (Imidacloprid 17.1% w/w) on the ATCC  Escherichia coli . An experiment was conducted on ATCC  Escherichia coli  27852. A 0.5 McFarland suspension of the strain was incubated in the presence of a pesticide compound (Imidacloprid 17.1% w/w) at a dilution of 1:4, 1:8, and 1:16. at 370C. Antibiotic susceptibility for cefoxitin, ciprofloxacin, ceftazidime, amikacin, and imipenem was determined via the Kirby-Bauer disk diffusion test at intervals of 24 hours, 48 hours, seven days, and 21 days. The results were then compared to the standard zone of inhibition diameter for ATCC  Escherichia coli  27852 by Clinical and Laboratory Standards Institute (CLSI) guidelines. Results No bacterial growth was detected at pesticide dilutions of 1:1 and 1:2, indicating their inability to tolerate high pesticide concentrations. However, growth became evident at a 1:4 dilution and beyond, with mutants thriving within the inhibition zone. The experiment caused significant alterations in the inhibition zone sizes for all antibiotics, especially notable with imipenem, amikacin, and ceftazidime compared to the initial zone size for ATCC  Escherichia coli  27852. Conclusion Our study concludes that the pesticide (Imidacloprid 17.1% w/w) significantly influences antibiotic resistance, especially with carbapenems, aminoglycosides, and cephalosporins in the tested groups at various concentrations and durations of exposure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app