Add like
Add dislike
Add to saved papers

Total coliforms, microbial diversity and multiple characteristics of Salmonella in soil-irrigation water-fresh vegetable system in Shaanxi, China.

Global occurrences of foodborne disease outbreaks have been documented, involving fresh agricultural produce contaminated by various pathogens. This contamination can occur at any point in the supply chain. However, studies on the prevalence of total coliforms, Salmonella and microbial diversity in vegetable and associated environments are limited. This study aimed to assess 1) the number of total coliforms (n = 299) and diversity of microbial communities (n = 52); 2) the prevalence, antibiotic susceptibility, genomic characteristics, and potential transmission relationships of Salmonella in soil-irrigation water-vegetable system (n = 506). Overall, 84.28 % samples were positive to total coliforms, with most frequently detected in soil (100 %), followed by irrigation water (79.26 %) and vegetables (62 %). A seasonal trend in coliform prevalence was observed, with significantly higher levels in summer (P < 0.05). Detection rates of Salmonella in soil, vegetable and irrigation water were 2.21 %, 4.74 % and 9.40 %. Fourteen serotypes and sequence types (STs) were respectively annotated in 56 Salmonella isolates, ST13 S. Agona (30.36 %, 17/56), ST469 S. Rissen (25 %, 14/56), and ST36 S. Typhimurium (12.5 %, 7/56) were dominant serotypes and STs. Thirty-six (55.36 %) isolates were multi-drug resistant, and the resistance was most frequently found to ampicillin (55.36 %, 31/56), followed by to sulfamethoxazole (51.79 %, 29/56) and tetracycline (50.00 %, 28/56). The genomic characteristics and antibiotic resistance patterns of Salmonella isolates from soil, vegetables, and irrigation water within a coherent geographical locale exhibited remarkable similarities, indicating Salmonella may be transmitted among these environments or have a common source of contamination. Microbial alpha diversity indices in soil were significantly higher (P < 0.05) than that in vegetable and irrigation water. The microbial phylum in irrigation water covered that in the vegetable, demonstrating a significant overlap in the microbial communities between the vegetables and the irrigation water. Water pH, temperature and total dissolved solids were closely related to the microbial diversity of irrigation water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app