Add like
Add dislike
Add to saved papers

Stabilizing effect of silver carp myofibrillar protein modified by high intensity ultrasound on high internal phase emulsions: Protein denaturation, interfacial adsorption and reconfiguration.

This study evaluated the impact of high intensity ultrasound (HIU) on myofibrillar proteins (MP) from silver carp, and investigated the stabilizing effect of HIU-treated MP (UMP) on high internal phase emulsions (HIPEs). Ultrasonic cavitation induced protein denaturation by decreasing size and unfolding conformation, to expose more hydrophobic groups, particularly UMP at 390 W, showing the smallest particle size (181.71 nm) and most uniform distribution. These structural changes caused that UMP under 390 W exhibited the highest surface hydrophobicity, solubility (92.72 %) and emulsibility (115.98 m2 /g and 70.4 min), all of which contributed to fabricating stable HIPEs with oil volume fraction up to 0.8. UMP-based HIPEs possessed tightly packed gel network and self-supporting appearance due to the adsorption of numerous proteins at the oil-water interface and the reduction of interfacial tension by protein reconfiguration. The larger interface coverage reinforced cross-linking between interfacial proteins, thus increasing the viscoelasticity and recoverability of HIPEs, also the resistance to centrifugal force, high temperature (90 °C, 30 min) and freeze-thaw cycles. These findings furnished insightful perspectives for MP deep processing through HIU, expanding the high-value application of UMP-based HIPEs in fat replacer, nutritional delivery system with high encapsulation content and novel 3D printing ink.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app