Add like
Add dislike
Add to saved papers

Simple method for isolation and culture of primary buffalo (Bubalus bubalis) endometrial epithelial cells (pBuEECs) and its characterization using high throughput proteomics approach.

Animal Reproduction Science 2024 Februrary 30
Early embryonic mortality resulting from insufficient interaction between the embryo and the uterus leads to the failure of pregnancy in livestock animals. Thus, it is imperative to comprehend the multifaceted process of implantation at molecular levels, which requires synchronized feto-maternal interaction. The in-vitro models serve as valuable tools to investigate the specific stages of implantation. The present study was undertaken to develop a simple method to isolate and culture the primary buffalo endometrial epithelial cells (pBuEECs), followed by proteome profiling of the proliferating cells. Collagenase I was used to separate uterine epithelial cells (UECs) from the ipsilateral uterine horn, and then the cells were separated using a cell strainer. After being seeded on culture plates, UECs developed colonies with characteristic epithelial shape and expressed important markers such as cytokeratin 18 (KRT18), progesterone receptor (PGR), β-estrogen receptor (ESR1), and leukemia inhibitory factor (LIF), which were confirmed by PCR. The purity of epithelial cells was assessed using cytokeratin 18 immunostaining, which indicated approximately 99% purity in cultured cells. The proteome profiling of pBuEECs via high-throughput tandem mass spectrometry (MS), identified a total of 3383 proteins. Bioinformatics analysis revealed enrichment in various biological processes, including cellular processes, metabolic processes, biological regulation, localization, signaling, and developmental processes. Moreover, the KEGG pathway analysis highlighted associations with the ribosome, proteosome, oxidative phosphorylation, spliceosome, and cytoskeleton regulation pathways. In conclusion, these well characterized cells offer valuable in-vitro model to enhance the understanding of implantation and uterine pathophysiology in livestock animals, particularly buffaloes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app