Add like
Add dislike
Add to saved papers

Deep learning for automatic prediction of early activation of treatment naïve non-exudative MNVs in AMD.

Retina 2024 March 15
BACKGROUND: Around 30% of non-exudative macular neovascularizations(NE-MNVs) exudate within 2 years from diagnosis in patients with age-related macular degeneration(AMD).The aim of the study is to develop a deep learning classifier based on optical coherence tomography(OCT) and OCT angiography(OCTA) to identify NE-MNVs at risk of exudation.

METHODS: AMD patients showing OCTA and fluorescein angiography (FA) documented NE-MNV with a 2-years minimum imaging follow-up were retrospectively selected. Patients showing OCT B-scan-documented MNV exudation within the first 2 years formed the EX-GROUP while the others formed QU-GROUP.ResNet-101, Inception-ResNet-v2 and DenseNet-201 were independently trained on OCTA and OCT B-scan images. Combinations of the 6 models were evaluated with major and soft voting techniques.

RESULTS: Eighty-nine (89) eyes of 89 patients with a follow-up of 5.7 ± 1.5 years were recruited(35 EX GROUP and 54 QU GROUP). Inception-ResNet-v2 was the best performing among the 3 single convolutional neural networks(CNNs).The major voting model resulting from the association of the 3 different CNNs resulted in improvement of performance both for OCTA and OCT B-scan (both significantly higher than human graders' performance). Soft voting model resulting from the combination of OCTA and OCT B-scan based major voting models showed a testing accuracy of 94.4%. Peripheral arcades and large vessels on OCTA enface imaging were more prevalent in QU GROUP.

CONCLUSIONS: Artificial intelligence shows high performances in identifications of NE-MNVs at risk for exudation within the first 2 years of follow up, allowing better customization of follow up timing and avoiding treatment delay. Better results are obtained with the combination of OCTA and OCT B-scan image analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app