Add like
Add dislike
Add to saved papers

Space-Time Structured Plasma Waves.

Electrostatic waves play a critical role in nearly every branch of plasma physics from fusion to advanced accelerators, to astro, solar, and ionospheric physics. The properties of planar electrostatic waves are fully determined by the plasma conditions, such as density, temperature, ionization state, or details of the distribution functions. Here we demonstrate that electrostatic wave packets structured with space-time correlations can have properties that are independent of the plasma conditions. For instance, an appropriately structured electrostatic wave packet can travel at any group velocity, even backward with respect to its phase fronts, while maintaining a localized energy density. These linear, propagation-invariant wave packets can be constructed with or without orbital angular momentum by superposing natural modes of the plasma and can be ponderomotively excited by space-time structured laser pulses like the flying focus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app