Add like
Add dislike
Add to saved papers

Localized calcium transients in phragmoplast regulate cytokinesis of tobacco BY-2 cells.

Plant Cell Reports 2024 March 16
Plants exhibit a unique pattern of cytosolic Ca2+ dynamics to correlate with microtubules to regulate cytokinesis, which significantly differs from those observed in animal and yeast cells. Calcium (Ca2+ ) transients mediated signaling is known to be essential in cytokinesis across eukaryotic cells. However, the detailed spatiotemporal dynamics of Ca2+ during plant cytokinesis remain largely unexplored. In this study, we employed GCaMP5, a genetically encoded Ca2+ sensor, to investigate cytokinetic Ca2+ transients during cytokinesis in Nicotiana tabacum Bright Yellow-2 (BY-2) cells. We validated the effectiveness of GCaMP5 to capture fluctuations in intracellular free Ca2+ in transgenic BY-2 cells. Our results reveal that Ca2+ dynamics during BY-2 cell cytokinesis are distinctly different from those observed in embryonic and yeast cells. It is characterized by an initial significant Ca2+ spike within the phragmoplast region. This spike is followed by a decrease in Ca2+ concentration at the onset of cytokinesis in phragmoplast, which then remains elevated in comparison to the cytosolic Ca2+ until the completion of cell plate formation. At the end of cytokinesis, Ca2+ becomes uniformly distributed in the cytosol. This pattern contrasts with the typical dual waves of Ca2+ spikes observed during cytokinesis in animal embryonic cells and fission yeasts. Furthermore, applications of pharmaceutical inhibitors for either Ca2+ or microtubules revealed a close correlation between Ca2+ transients and microtubule organization in the regulation of cytokinesis. Collectively, our findings highlight the unique dynamics and crucial role of Ca2+ transients during plant cell cytokinesis, and provides new insights into plant cell division mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app