Read by QxMD icon Read

Plant Cell Reports

Huilin Yang, Yuande Peng, Jianxiang Tian, Juan Wang, Jilin Hu, Qisheng Song, Zhi Wang
Since the birth of transgenic crops expressing Bacillus thuringiensis (Bt) toxin for pest control, the public debate regarding ecological and environmental risks as well as benefits of Bt crops has continued unabated. The impact of Bt crops, especially on non-target invertebrates, has received particular attention. In this review, we summarize and analyze evidences for non-target effects of Bt rice on spiders, major predators in rice fields. Bt rice has been genetically modified to express the Bt protein, which has been shown to be transferred and accumulate in spiders as part of their food chain...
February 16, 2017: Plant Cell Reports
Hiroshi Hisano, Brigid Meints, Matthew J Moscou, Luis Cistue, Begoña Echávarri, Kazuhiro Sato, Patrick M Hayes
The genetic substitution of transformation amenability alleles from 'Golden Promise' can facilitate the development of transformation-efficient lines from recalcitrant barley cultivars. Barley (Hordeum vulgare) cv. 'Golden Promise' is one of the most useful and well-studied cultivars for genetic manipulation. In a previous report, we identified several transformation amenability (TFA) loci responsible for Agrobacterium-mediated transformation using the F2 generation of immature embryos, derived from 'Haruna Nijo' × 'Golden Promise,' as explants...
February 15, 2017: Plant Cell Reports
Yang Liu, Yousry A El-Kassaby
We employed an Illumina sequencing approach to identify candidate microRNA cohorts that may greatly contribute to seed dormancy modulation and to construct a microRNA-gene regulatory network in hormone signalling cascades. MicroRNAs (miRNAs) are important signalling molecules and regulate many developmental programs of plants. Some miRNAs have been integrated into gene regulatory networks (GRNs) and coordinate developmental plasticity, but few study systematically investigated how phenotypical variations are regulated through differential expression of miRNA tags in GRNs during seed set...
February 14, 2017: Plant Cell Reports
Huayu Sun, Lichao Li, Yongfeng Lou, Hansheng Zhao, Yihong Yang, Sining Wang, Zhimin Gao
PeTIP4;1-1, an aquaporin gene involved in bamboo shoot growth, is regulated by abiotic stresses. Overexpression of PeTIP4;1-1 confers drought and salinity tolerance in transgenic Arabidopsis. Aquaporins play a central role in numerous physiological processes throughout plant growth and development. PeTIP4;1-1, an aquaporin gene isolated from moso bamboo (Phyllostachys edulis), comprises an open reading frame (ORF) of 756 bp encoding a peptide of 251 amino acids. The genomic sequence corresponding to the ORF of PeTIP4;1-1 was 1777 bp and contained three exons separated by two introns...
February 6, 2017: Plant Cell Reports
Jeffrey Beringer, Wei Chen, Russell Garton, Nagesh Sardesai, Po-Hao Wang, Ning Zhou, Manju Gupta, Huixia Wu
The choice of promoter regulating the selectable marker gene impacts transformation efficiency, copy number and the expression of selectable marker and flanking genes in maize. Viral or plant-derived constitutive promoters are often used to regulate selectable marker genes. We compared two viral promoters, cauliflower mosaic virus (CaMV 35T) and sugarcane bacilliform virus (SCBV) with two plant promoters, rice actin1 (OsAct1) and maize ubiquitin 1 (ZmUbi1) to drive aryloxyalkanoate dioxygenase (aad-1) selectable marker gene in maize inbred line B104...
February 3, 2017: Plant Cell Reports
Ye Han, Shoukun Han, Qiuyan Ban, Yiheng He, Mijing Jin, Jingping Rao
DkXTH1 promoted cell elongation and more strength to maintain structural integrity by involving in cell wall assembly, thus enhanced tolerance to abiotic stress with broader phenotype in transgenic plants. Xyloglucan endotransglucosylase/hydrolase (XTH) is thought to play a key role in cell wall modifications by cleaving and re-joining xyloglucan, and participates in the diverse physiological processes. DkXTH1 was found to peak in immature expanding persimmon fruit, and its higher expression level exhibited along with firmer fruit during storage...
February 2, 2017: Plant Cell Reports
Zhong-Ming Liu, Meng-Meng Yue, Dong-Yue Yang, Shao-Bo Zhu, Na-Na Ma, Qing-Wei Meng
Over-expression of SlJA2 decreased the accumulation of SA, which resulted in significant physiological and gene expression changes in transgenic tobacco plants, leading to the decreased heat tolerance of transgenic tobacco. NAC family, the largest transcription factors in plants, responses to different environmental stimuli. Here, we isolated a typical NAC transcription factor (SlJA2) from tomato and got transgenic tobacco with SlJA2 over-expression. Expression of SlJA2 was induced by heat stress (42 °C), chilling stress (4 °C), drought stress, osmotic stress, abscisic acid, and salicylic acid...
February 2, 2017: Plant Cell Reports
Luo Zhao, Chuchu Wang, Fan Zhu, Yuan Li
MKK9-MPK3/MPK6 cascade positively regulates IGSs' biosynthetic genes. Glucosinolates (GSs), secondary metabolites well known for their roles in plant defense, have been implicated to play an important role in plant abiotic stress response; however, the exact role in these processes and the underlying regulatory mechanisms remain elusive. Mitogen-activated protein kinase (MAPK) cascades are extensively involved in plant abiotic stress response. In this study, we examined the levels of four indolic glucosinolates (IGSs) in the shoots of Arabidopsis seedlings under mild osmotic stress conditions and found that 4-methoxy indolyl-3-methyl glucosinolate (4MI3G) accumulated and that MPK3 and MPK6 were activated...
February 2, 2017: Plant Cell Reports
Ke Wang, Ming Zhong, Yin-Huan Wu, Zhen-Yu Bai, Qian-Yu Liang, Qing-Lin Liu, Yuan-Zhi Pan, Lei Zhang, Bei-Bei Jiang, Yin Jia, Guang-Li Liu
DgNAC1, a transcription factor of chrysanthemum, was functionally verified to confer salt stress responses by regulating stress-responsive genes. NAC transcription factors play effective roles in resistance to different abiotic stresses, and overexpressions of NAC TFs in Arabidopsis have been proved to be conducive in improving salinity tolerance. However, functions of NAC genes in chrysanthemum continue to be poorly understood. Here, we performed physiology and molecular experiments to evaluate roles of DgNAC1 in chrysanthemum salt stress responses...
January 23, 2017: Plant Cell Reports
M C Vaccaro, A Mariaevelina, N Malafronte, N De Tommasi, A Leone
No abstract text is available yet for this article.
December 27, 2016: Plant Cell Reports
Garima Pandey, Chandra Bhan Yadav, Pranav Pankaj Sahu, Mehanathan Muthamilarasan, Manoj Prasad
Genome-wide methylation analysis of foxtail millet cultivars contrastingly differing in salinity tolerance revealed DNA demethylation events occurring in tolerant cultivar under salinity stress, eventually modulating the expression of stress-responsive genes. Reduced productivity and significant yield loss are the adverse effects of environmental conditions on physiological and biochemical pathways in crop plants. In this context, understanding the epigenetic machinery underlying the tolerance traits in a naturally stress tolerant crop is imperative...
December 20, 2016: Plant Cell Reports
Fátima Duarte-Aké, Eduardo Castillo-Castro, Felipe Barredo Pool, Francisco Espadas, Jorge M Santamaría, Manuel L Robert, Clelia De-la-Peña
No abstract text is available yet for this article.
December 20, 2016: Plant Cell Reports
Andrzej Kaźmierczak, Magdalena Doniak, Przemysław Bernat
Changes in cellular membrane potential and their fluidisation are the hallmarks of cell death induction with kinetin in root cortex. Programmed cell death (PCD), one of the essential processes in plant development, is still poorly understood. In this paper, the scientific plant model, V. faba ssp. minor seedling roots after kinetin application which triggers off programmed death of cortex cells, was used to recognise membrane-related aspects of plant cell death. Spectrophotometric, reflectometric and microscopic studies showed that the PCD induced by kinetin is accompanied by higher potassium ions leakage from roots, loss of plasma and ER membrane potentials (expressed by their lower amounts and higher index of fatty acid unsaturation), malformation of nuclear envelope, lower total lipid amount and formation of their peroxides, lower amount of phospholipids and changes in their composition...
December 10, 2016: Plant Cell Reports
Regina Ríos-Huerta, Elizabeth Monreal-Escalante, Dania O Govea-Alonso, Carlos Angulo, Sergio Rosales-Mendoza
An antigenic protein targeting two epitopes from the Zaire ebolavirus GP1 protein was expressed in plant cells rendering an antigen capable of inducing humoral responses in mouse when administered subcutaneously or orally. The 2014 Ebola outbreak made clear that new treatments and prophylactic strategies to fight this disease are needed. Since vaccination is an intervention that could achieve the control of this epidemic disease, exploring the production of new low-cost vaccines is a key path to consider; especially in developing countries...
December 9, 2016: Plant Cell Reports
Yaoyao Ye, Yanfei Ding, Qiong Jiang, Feijuan Wang, Junwei Sun, Cheng Zhu
We review and introduce recent studies on RLK s involved in the abiotic stress response and provide insights into potential regulatory mechanisms for alleviating abiotic stress. Abiotic stresses are important factors affecting plant growth and development, resulting in crop production reduction and even plant death. To survive, plants utilize different mechanisms to respond and adapt to continuously changing environmental factors. Understanding of the molecular mechanisms of plant response to various stresses will aid in improving tolerance of plants to abiotic stress through genetic engineering, which would greatly promote the development of modern agriculture...
December 8, 2016: Plant Cell Reports
Rong Lei, Hongshan Jiang, Fan Hu, Jin Yan, Shuifang Zhu
Leaf chlorosis induced by plant virus infection has a short fluorescence lifetime, which reflects damaged photosynthetic complexes and degraded chloroplasts. Plant viruses often induce chlorosis and necrosis, which are intimately related to photosynthetic functions. Chlorophyll fluorescence lifetime measurement is a valuable noninvasive tool for analyzing photosynthetic processes and is a sensitive indicator of the environment surrounding the fluorescent molecules. In this study, our central goal was to explore the effect of viral infection on photosynthesis by employing chlorophyll fluorescence lifetime imaging (FLIM), steady-state fluorescence, non-photochemical quenching (NPQ), transmission electron microscopy (TEM), and pigment analysis...
November 30, 2016: Plant Cell Reports
Shuai Chen, Fengxia Li, Dan Liu, Caihong Jiang, Lijie Cui, Lili Shen, Guanshan Liu, Aiguo Yang
Dynamic transcriptional changes of the host early responses genes were detected in PVY-resistant tobacco varieties infected with Potato virus Y; PVY resistance is a complex process that needs series of stress responses. Potato virus Y (PVY) causes a severe viral disease in cultivated crops, especially in Solanum plants. To understand the molecular basis of plant responses to the PVY stress, suppression subtractive hybridization (SSH) and microarray approaches were combined to identify the potentially important or novel genes that were involved in early stages (12 h, 1, 2, 3, 5, 8 days) of tobacco response to PVY infection...
November 28, 2016: Plant Cell Reports
Yijun Wang, Jia Zhao, Wenjie Lu, Dexiang Deng
Height relates to plant architecture, lodging resistance, and yield performance. Growth-promoting phytohormones gibberellins (GAs) play a pivotal role in plant height control. Mutations in GA biosynthesis, metabolism, and signaling cascades influence plant height. Moreover, GA interacts with other phytohormones in the modulation of plant height. Here, we first briefly describe the regulation of plant height by altered GA pathway. Then, we depict effects of the crosstalk between GA and other phytohormones on plant height...
March 2017: Plant Cell Reports
Henk J Schouten, Henri Vande Geest, Sofia Papadimitriou, Marian Bemer, Jan G Schaart, Marinus J M Smulders, Gabino Sanchez Perez, Elio Schijlen
Transformation resulted in deletions and translocations at T-DNA inserts, but not in genome-wide small mutations. A tiny T-DNA splinter was detected that probably would remain undetected by conventional techniques. We investigated to which extent Agrobacterium tumefaciens-mediated transformation is mutagenic, on top of inserting T-DNA. To prevent mutations due to in vitro propagation, we applied floral dip transformation of Arabidopsis thaliana. We re-sequenced the genomes of five primary transformants, and compared these to genomic sequences derived from a pool of four wild-type plants...
March 2017: Plant Cell Reports
Ai Sasou, Takanari Shigemitsu, Shigeto Morita, Takehiro Masumura
Rice prolamins are accumulated in endoplasmic reticulum (ER)-derived proteins bodies, although conserved sequences retained in ER are not confirmed. We investigated portion sequences of prolamins that must accumulate in PB-Is. Rice seed prolamins are accumulated in endoplasmic reticulum (ER)-derived protein body type I (PB-I), but ER retention sequences in rice prolamin polypeptides have not been confirmed. Here we investigated the lengths of the prolamin portion sequences required for accumulation in PB-Is...
March 2017: Plant Cell Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"