Add like
Add dislike
Add to saved papers

Precise Spectral Overlap-Based Donor-Acceptor Pair for a Sensitive Traffic Light-Typed Bimodal Multiplexed Lateral Flow Immunoassay.

Analytical Chemistry 2024 March 16
Bimodal-type multiplexed immunoassays with complementary mode-based correlation analysis are gaining increasing attention for enhancing the practicability of the lateral flow immunoassay (LFIA). Nonetheless, the restriction in visually indistinguishable multitargets induced by a single fluorescent color and difficulty in single acceptor ineffectual fluorescence quenching due to the various spectra of multiple different donors impede the further execution of colorimetric-fluorescence bimodal-type multiplexed LFIAs. Herein, the precise spectral overlap-based donor-acceptor pair construction strategy is proposed by regulating the size of the nanocore, coating it with an appropriate nanoshell, and selecting a suitable fluorescence donor with distinct colors. By in situ coating Prussian blue nanoparticles (PBNPs) on AuNPs with a tunable size and absorption spectrum, the resultant APNPs demonstrate efficient fluorescence quenching ability, higher colloidal stability, remarkable colorimetric intensity, and an enhanced antibody coupling efficiency, all of which facilitate highly sensitive bimodal-type LFIA analysis. Following integration with competitive-type immunoreaction, this precise spectral overlap-supported spatial separation traffic light-typed colorimetric-fluorescence dual-response assay (coined as the STCFD assay) with the limits of detection of 0.013 and 0.152 ng mL-1 for ractopamine and clenbuterol, respectively, was proposed. This work illustrates the superiority of the rational design of a precise spectral overlap-based donor-acceptor pair, hinting at the enormous potential of the STCFD assay in the point-of-care field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app