Add like
Add dislike
Add to saved papers

Modulating oxidative stress, apoptosis and mitochondrial dysfunctions on cardiotoxicity induced by aluminum phosphide pesticide using resveratrol.

The agricultural fumigant pesticide aluminum phosphide (AlP) is cardiotoxic. Water causes AlP to emit phosphine gas, a cardiac toxin that affects heart function and causes cardiogenic shock. AlP poisoning's high fatality rate is due to cardiotoxicity. This study examines how resveratrol reduces oxidative stress, mitochondrial activity, and apoptosis in human cardiac myocyte (HCM) cells. After determining the optimal doses of resveratrol using the MTT test, HCM cells were subjected to a 24-hour treatment of resveratrol following exposure to AlP (2.36 μM). The levels of reactive oxygen species (ROS), superoxide dismutase (SOD) activity, mitochondrial swelling, mitochondrial cytochrome c release, and mitochondrial membrane potential (MMP) in HCM cells were investigated. Also, the expression of Bax and Bcl-2, caspace-3 activity, and apoptosis were assessed. The present investigation revealed that AlP substantially increased the level of ROS and decreased SOD activation, which were significantly modulated by resveratrol in a dose-dependent manner. Moreover, AlP induced an elevation of mitochondrial swelling, cytochrome c release, and MMP collapse. Co-administration of resveratrol significantly reduced above mitochondrial markers. AlP also significantly upregulated BAX and downregulated Bcl-2 expression, elevated caspace-3 activity, and apoptosis. Resveratrol co-administration was able to meaningfully modulate the mentioned parameters and finally reduce apoptosis. In conclusion, resveratrol, via its pleotropic properties, significantly demonstrated cytoprotective effects on HCM cytotoxicity induced by AlP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app