Add like
Add dislike
Add to saved papers

Quantum-Confined-Superfluidics-Enabled Multiresponsive MXene-Based Actuators.

MXene, renowned for its natural "quantum-confined-superfluidic" (QSF) channels, demonstrates superior electrical/thermal conductivity, favorable hydrophilicity, and remarkable mechanical strength, rendering it an ideal candidate for multiresponsive actuators, which are promising for soft electronics and robots. Currently, most MXene-based actuators are mainly prepared by combining an active layer and an inner layer, with only a few utilizing regulated QSF channels. However, tailoring QSF channels for multiresponsive actuators is extremely challenging. Herein, we introduce a multiresponsive graphene oxide (GO)&Fe3 O4 /MXene actuator that can respond to humidity, light, heat, electricity, and magnetic fields by constructing asymmetric QSF channels. The asymmetric water adsorption, transportation, and desorption behaviors, controlled by the different QSF channels between the GO&Fe3 O4 layer and the MXene layer, enable the multiresponsiveness of the actuator. As proof-of-concept demonstrations, several smart devices, such as a bionic crab-like crawler, a transporting flower robot, and a smart gripper, are prepared, holding great potential for advancing future soft robotics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app