Add like
Add dislike
Add to saved papers

Experimental and computational studies of crystal violet removal from aqueous solution using sulfonated graphene oxide.

Scientific Reports 2024 March 15
Positively charged contaminants can be strongly attracted by sulfanilic acid-functionalized graphene oxide. Here, sulfonated graphene oxide (GO-SO3 H) was synthesized and characterized for cationic crystal violet (CV) adsorption. We further studied the effect of pH, initial concentration, and temperature on CV uptake. The highest CV uptake occurred at pH 8. A kinetic study was also carried out by applying the pseudo-first-order and pseudo-second-order models. The pseudo-second-order's adsorption capacity (qe) value was much closer to the experimental qe (qeexp :0.13, qecal :0.12) than the pseudo-first-order model (qeexp :0.13, qecal :0.05). The adsorption performance was accomplished rapidly since the adsorption equilibrium was closely obtained within 30 min. Furthermore, the adsorption capacity was significantly increased from 42.85 to 79.23%. The maximum adsorption capacities of GO-SO3 H where 97.65, 202.5, and 196.2 mg·g-1 for CV removal at 298, 308, and 328 K, respectively. The Langmuir and Freundlich adsorption isotherms were applied to the experimental data. The data fit well into Langmuir and Freundlich except at 298 K, where only Langmuir isotherm was most suitable. Thermodynamic studies established that the adsorption was spontaneous and endothermic. The adsorption mechanism was revealed by combining experimental and computational methods. These findings suggest that GO-SO3 H is a highly adsorbent for removing harmful cationic dye from aqueous media.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app