Add like
Add dislike
Add to saved papers

Presynaptic inhibition of excitatory synaptic transmission from the calcitonin gene-related peptide-containing parabrachial neurons to the central amygdala in mice - unexpected influence of systemic inflammation thereon.

The monosynaptic connection from the lateral parabrachial nucleus (LPB) to the central amygdala (CeA) serves as a fundamental pathway for transmitting nociceptive signals to the brain. The LPB receives nociceptive information from the dorsal horn and spinal trigeminal nucleus and sends it to the "nociceptive" CeA, which modulates pain-associated emotions and nociceptive sensitivity. To elucidate the role of densely expressed mu-opioid receptors (MORs) within this pathway, we investigated the effects of exogenously applied opioids on LPB-CeA synaptic transmission, employing optogenetics in mice expressing channelrhodopsin-2 in LPB neurons with calcitonin gene-related peptide (CGRP). A MOR agonist ([D-Ala2 ,N-Me-Phe4 ,Glycinol5 ]-enkephalin, DAMGO) significantly reduced the amplitude of light-evoked excitatory postsynaptic currents (leEPSCs), in a manner negatively correlated with an increase in the paired-pulse ratio. An antagonist of MORs significantly attenuated these effects. Notably, this antagonist significantly increased leEPSC amplitude when applied alone, an effect further amplified in mice subjected to lipopolysaccharide injection 2 h before brain isolation, yet not observed at the 24-h mark. We conclude that opioids could shut off the ascending nociceptive signal at the LPB-CeA synapse through presynaptic mechanisms. Moreover, this gating process might be modulated by endogenous opioids, and the innate immune system influences this modulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app