Add like
Add dislike
Add to saved papers

Degradation of dissolved sulfide in water using multi-hole dielectric barrier discharge.

Chemosphere 2024 March 13
Biogas obtained from livestock manure is used as fuel for solid oxide fuel cells. Although H2 S is a typical biogas, it is a fatal disadvantage for fuel-cell power generation and, thus, must be removed. In this study, we proposed an effective method for sulfide removal from water using a multi-hole dielectric barrier discharge (DBD) system. In this system, active species, such as ozone, ultraviolet rays, hydroxyl radicals, and hydrogen peroxide, were simultaneously generated. Under optimal conditions, dissolved sulfide (initial concentration: 120 mg/L) was completely degraded within 10 min in air plasma and 6 min in oxygen plasma. Changes in the physical properties of the sulfide-treated water were confirmed by measuring the pH, oxidation-reduction potential, and dissolved oxygen. Results of the by-product analysis showed that sulfide was converted into sulfate by reacting with a large amount of ozone, and the active species were emitted from the multi-hole DBD system. In summary, multi-hole DBD technology has demonstrated merit as a water-contaminant purification technology and for the removal of dissolved sulfide.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app