Add like
Add dislike
Add to saved papers

Transcription suppression of GABARAP mediated by lncRNA XIST-EZH2 interaction triggers caspase-11-dependent inflammatory injury in ulcerative colitis.

Immunobiology 2024 March 7
BACKGROUND: We have previously found that enhancer of zeste homolog 2 (EZH2) is correlated with inflammatory infiltration and mucosal cell injury in ulcerative colitis (UC). This study aims to analyze the role of X-inactive specific transcript (XIST), a possible interactive long non-coding RNA of EZH2, in UC and to explore the mechanisms.

METHODS: C57BL/6N mice were treated with dextran sulfate sodium (DSS), and mouse colonic mucosal epithelial cells were treated with DSS and lipopolysaccharide (LPS) for UC modeling. The UC-related symptoms in mice, and the viability and apoptosis of mucosal epithelial cells were determined. Inflammatory injury in animal and cellular models were assessed through the levels of ACS, occludin, IL-1β, IL-18, TNF-α, caspase-1, and caspase-11. Molecular interactions between XIST, EZH2, and GABA type A receptor-associated protein (GABARAP) were verified by immunoprecipitation assays, and their functions in inflammatory injury were determined by gain- or loss-of-function assays.

RESULTS: XIST was highly expressed in DSS-treated mice and in DSS + LPS-treated mucosal epithelial cells. It recruited EZH2, which mediated gene silencing of GABARAP through H3K27me3 modification. Silencing of XIST alleviated body weight loss, colon shortening, and disease active index of mice and reduced inflammatory injuries in their colon tissues. Meanwhile, it reduced apoptosis and inflammation in mucosal epithelial cells. However, these alleviating effects were blocked by either EZH2 overexpression or GABARAP knockdown. Rescue experiments identified caspase-11 as a key effector mediating the inflammatory injury following GABARAP loss.

CONCLUSION: This study suggests that the XIST-EZH2 interaction-mediated GABARAP inhibition activates caspase-11-dependent inflammatory injury in UC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app