Add like
Add dislike
Add to saved papers

Heavy Metal Remediation by Dry Mycelium Membranes: Approaches to Sustainable Lead Remediation in Water.

Lead contamination poses significant and lasting health risks, particularly in children. This study explores the efficacy of dried mycelium membranes, distinct from live fungal biomass, for the remediation of lead (Pb(II)) in water. Dried mycelium offers unique advantages, including environmental resilience, ease of handling, biodegradability, and mechanical reliability. The study explores Pb(II) removal mechanisms through sorption and mineralization by dried mycelium hyphae in aqueous solutions. The sorption isotherm studies reveal a high Pb(II) removal efficiency, exceeding 95% for concentrations below 1000 ppm and ∼63% above 1500 ppm, primarily driven by electrostatic interactions. The measured infrared peak shifts and the pseudo-second-order kinetics for sorption suggests a correlation between sorption capacity and the density of interacting functional groups. The study also explores novel surface functionalization of the mycelium network with phosphate to enhance Pb(II) removal, which enables remediation efficiencies >95% for concentrations above 1500 ppm. Scanning electron microscopy images show a pH-dependent formation of Pb-based crystals uniformly deposited throughout the entire mycelium network. Continuous cross-flow filtration tests employing a dried mycelium membrane demonstrate its efficacy as a microporous membrane for Pb(II) removal, reaching remediation efficiency of 85-90% at the highest Pb(II) concentrations. These findings suggest that dried mycelium membranes can be a viable alternative to synthetic membranes in heavy metal remediation, with potential environmental and water treatment applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app