Add like
Add dislike
Add to saved papers

Learning Stiffness Tensors in Self-Activated Solids via a Local Rule.

Mechanical metamaterials are often designed with particular properties for specific load-bearing functions. Alternatively, this study aims to create a class of active lattice metamaterials, dubbed self-activated solids, that can learn desired stiffness tensors from the elastic deformations they experienced, a crucial feature to improve the performance, efficiency, and functionality of materials. Artificial adaptive matters that combine sensory, control, and actuation elements can offer appealing solutions. However, challenges still remain: The designs will rely on accurate off-line and global computations, as well as intricate coordination among individual elements. Here, a simple online and local learning strategy is initiated based on contrastive Hebbian learning to gradually guide self-activated solids to possess sought-after stiffness tensors autonomously and reversibly. During learning, the bond stiffness of the active lattice varies depending only on its local strain. The numerical tests show that the self-activated solid can not only achieve the desired bulk, shear, and coupling moduli but also manifest uni-mode and bi-mode extremal materials by itself after experiencing the corresponding elastic deformations. Further, the self-activated solid can also achieve the desired time-varying moduli when exposed to temporally different loads. The design is applicable to any lattice geometries and is resistant to damage and instabilities. The material design approach and the physical learning strategy suggested can benefit the design of autonomous materials, physical learning machines, and adaptive robots.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app