Add like
Add dislike
Add to saved papers

A histological examination of the effects of Ferula elaeochytris extract on kidney and liver tissues in myoglobinuric acute renal failure.

Myoglobinuric acute renal failure (MARF) is a structural and functional disorder that occurs in the kidney following the release of muscle cell contents into the circulation. In this present study, possible protective and curative effects of Ferula elaeochytris extract against kidney and liver damage in experimentally induced MARF in a rat model were investigated. 3-4 Month-old, 200-250 g Sprague Dawley rats were divided into 8 equal groups with 7 rats per group. Group I was a no-intervention Control group. All groups except for the Group I were dehydrated for 16 hours. Following this dehydration, 50% v/v aqueous glycerol solution was injected into both hind leg muscles of the animals, at a dose of 8 ml/kg. The rats were given physiological saline (SF) once orally before the model was administered (Group II) and after the model was administered (Group V). Similarly, two different doses of Ferula elaeochytris root extract (40 mg/kg and 80 mg/kg) were dissolved in 2 ml of SF and administered orally before (Groups III and IV) and after (Group VI, VII) the model was created. Following the experimental period, kidney and liver tissues were removed from all groups, and fixed in 10% neutral formaldehyde solution for light microscopic examinations. Intracellular vacuolization, enlargement in the Bowman's space, widespread atrophy in the tubular structures, luminal enlargement, and desquamation were detected in the kidney tissue sections of all the experimental model groups. In the liver tissue sections, was detected hepatocyte degeneration, intracellular vacuolization, irregularity in cell membrane borders, and apoptotic bodies. These histopathological consequences of MARF were evaluated for all groups, and whereas a curative effect of Ferula elaeochytris could be seen, its protective effect was higher than its curative effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app