Add like
Add dislike
Add to saved papers

Assessing the knot in a noose position by thyrohyoid and cervical spine fracture patterns in suicidal hangings using machine learning algorithms: A new insight into old dilemmas.

Hanging is one of the most common suicide methods worldwide. Neck injuries that occur upon such neck compression - fractures of the thyrohyoid complex and cervical spine, occupy forensic pathologists for a long time. However, research failed to identify particular patterns of these injuries corresponding to the force distribution a ligature applies to the neck: the issue of reconstructing the knot in a noose position persists. So far, machine learning (ML) models were not utilized to classify knot positions and reconstruct this event. We conducted a single-institutional, retrospective study on 1235 autopsy cases of suicidal hanging, developed several ML models, and assessed their classification performance in a stepwise manner to discriminate between: 1. typical ('posterior) and atypical ('anterior' and 'lateral') hangings, 2. anterior and lateral hangings, and 3. left and right lateral hangings. The variable coding was based on the presence/absence of fractures of greater hyoid bone horns (GHH), superior thyroid cartilage horns (STH), and cervical spine. Subject age was considered. The models' parameters were optimized by the Genetic Algorithm. The accuracy of ML models in the first step was very modest (c. 60%) but increased subsequently: Multilayer Perceptron - Artificial Neural Network and k-Nearest Neighbors performed excellently discriminating between left and right lateral hangings (accuracy 91.8% and 90.6%, respectively). The latter is of great importance for clarifying probable hanging fracture biomechanics. Alongside the conventional inferential statistical analysis we performed, our results further indicate the association of the knot position with ipsilateral GHH and contralateral STH fractures in lateral hangings. Moreover, odds for unilateral GHH fracture, simultaneous GHH and STH fractures, and cervical spine fracture were significantly higher in atypical ('anterior' and 'lateral') hangings, compared to typical ('posterior') hangings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app