Add like
Add dislike
Add to saved papers

A Polymer-Based Antigen Carrier Activates Two Innate Immune Pathways for Adjuvant-Free Subunit Vaccines.

ACS Nano 2024 March 14
The activation of multiple Pattern Recognition Receptors (PRRs) has been demonstrated to trigger inflammatory responses and coordinate the host's adaptive immunity during pathogen infections. The use of PRR agonists as vaccine adjuvants has been reported to synergistically induce specific humoral and cellular immune responses. However, incorporating multiple PRR agonists as adjuvants increases the complexity of vaccine design and manufacturing. In this study, we discovered a polymer that can activate both the Toll-like receptor (TLR) pathway and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. The polymer was then conjugated to protein antigens, creating an antigen delivery system for subunit vaccines. Without additional adjuvants, the antigen-polymer conjugates elicited strong antigen-specific humoral and cellular immune responses. Furthermore, the antigen-polymer conjugates, containing the Receptor Binding Domain (RBD) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike Protein or the Monkeypox Antigen M1R as the antigens, were found to induce potent antigen-specific antibodies, neutralizing antibodies, and cytotoxic T cells. Immunization with M1R-polymer also resulted in effective protection in a lethal challenge model. In conclusion, this vaccine delivery platform offers an effective, safe, and simple strategy for inducing antigen-specific immunity against infectious diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app