Add like
Add dislike
Add to saved papers

Blood-based microRNA profiling unveils complex molecular dynamics in breast cancer.

BACKGROUND: Breast cancer, a genetically intricate disease with diverse subtypes, exhibits heightened incidence globally. In this study, we aimed to investigate blood-based microRNAs (miRNAs) as potential biomarkers for breast cancer. The primary objectives were to explore the role of miRNAs in cancer-related processes, assess their differential expression between breast cancer patients and healthy individuals, and contribute to a deeper understanding of the molecular underpinnings of breast cancer.

METHODS: MiRNA extraction was performed on 40 breast cancer patients and adjacent normal tissues using a commercial RNA isolation kit. Total RNA quantification and quality assessment were conducted with advanced technologies. MiRNA profiling involved reverse transcription, labeling, and hybridization on Agilent human miRNA arrays (V2). Bioinformatics analysis utilized the DIANA system for target gene prediction and the DIANA-mirPath tool for pathway enrichment analysis. Selected miRNAs underwent validation through quantitative real-time PCR.

RESULTS: Principal component analysis revealed overlapping miRNA expression patterns in primary and malignant breast tumors, underscoring the genetic complexity involved. Statistical analysis identified 54 downregulated miRNAs in malignant tumors and 38 in primary tumors compared to controls. Bioinformatics analysis implicated several pathways, including Wnt, TGF-b, ErbB, and MAPK signaling. Validation through qRT-PCR confirmed altered expression of hsa-miR-130a, hsa-miR-21, hsa-miR-223, and hsa-let-7c key miRNAs, highlighting their significance in breast cancer. The results from microarray were further validated by qPCR and the expression of which are downregulated in breast cancer was detected.

CONCLUSION: This study provides significant insights into distinct miRNA expression patterns in normal and malignant breast tissues. The overlapping miRNA profiles in primary and malignant tumors underscore the complexity of genetic regulation in breast cancer. The identification of deregulated miRNAs and affected pathways contributes to our understanding of breast cancer pathogenesis. The validated miRNAs hold potential as diagnostic and prognostic markers, offering avenues for further clinical exploration in breast cancer research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app