Add like
Add dislike
Add to saved papers

Resistance exercise effects on hippocampus subfield volumes and biomarkers of neuroplasticity and neuroinflammation in older adults with low and high risk of mild cognitive impairment: a randomized controlled trial.

GeroScience 2024 March 14
Physical exercise is suggested to promote hippocampal neuroplasticity by increasing circulating neurotrophic and anti-inflammatory factors. Our aim was to explore the interplay between the effect of progressive resistance exercise on blood biomarker levels, hippocampal neurometabolite levels and hippocampal volume in older adults with a low compared to a high risk of mild cognitive impairment (MCI). Seventy apparently healthy male/female older adults (aged 60-85 years old) were randomly allocated to a 12 week lower limb progressive resistance or no intervention, stratified for low (< 26/30) or high (≥ 26/30) Montreal Cognitive Assessment (MoCA) score, indicating MCI risk. Outcome measures were blood levels of insulin-like growth factor-1 (IGF-1), interleukin-6 (IL-6) or kynurenine (KYN); hippocampal total and subfield volumes of the cornu ammonis 1 (CA1) and 4 (CA4), subiculum, presubiculum, and dentate gyrus measured with magnetic resonance imaging (MRI); and hippocampus neurometabolites including total N-acetylaspartate (NAA), myo-inositol (mIns), and total creatine (Cr) measured with proton magnetic resonance spectroscopy (1 H-MRS). We evaluated the intervention effect, cognitive status effect, their interaction and the bivariate relationship between exercise-induced changes between the outcome measures. Higher kynurenine levels (p = 0.015) and lower subiculum volumes (p = 0.043) were found in older adults with high MCI risk compared to older adults with low MCI risk. Exercise-induced CA1 volume changes were negatively correlated with hippocampal tNAA/mIns level changes (r = -0.605, p = 0.006). This study provides valuable insight in the multifactorial processes related to resistance training in older adults with low or high MCI risk.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app