Add like
Add dislike
Add to saved papers

Overexpression of cry1c* Enhances Resistance against to Soybean Pod Borer ( Leguminivora glycinivorella ) in Soybean.

Plants (Basel, Switzerland) 2024 Februrary 26
Soybean [ Glycine max (L.) Merr.], an essential staple food and oil crop worldwide, boasts abundant vegetable proteins and fats beneficial for both human and animal consumption. However, the soybean pod borer ( Leguminivora glycinivorella ) (SPB) stands as the most destructive soybean insect pest in northeast China and other northeastern Asian regions, leading to significant annual losses in soybean yield and economic burden. Therefore, this study aims to investigate the introduction of a previously tested codon-optimized cry1c gene, cry1c* , into the soybean genome and assess its effect on the SPB infestation by generating and characterizing stable transgenic soybeans overexpressing cry1c* . The transgenic soybean lines that constitutively overexpressed cry1c* exhibited a significant reduction in the percentage of damaged seeds, reaching as low as 5% in plants under field conditions. Additionally, feeding transgenic leaves to the larvae of S. exigua , S. litura , and M. separta resulted in inhibited larval growth, decreased larval body weight, and lower survival rates compared to larvae fed on wild-type leaves. These findings showed that the transgenic lines maintained their resistance to SPB and other lepidopteran pests, especially the transgenic line KC1. Southern blotting and genome-wide resequencing analysis revealed that T-DNA integration occurred as a single copy between loci 50,868,122 and 50,868,123 of chromosome 10 in the transgenic line KC1. Therefore, the transgenic line KC1, overexpressing high levels of cry1c* in leaves and seeds, holds strong potential for commercial use in the integrated management of SPB and other lepidopteran pests.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app