Add like
Add dislike
Add to saved papers

Predictive Path-Tracking Control of an Autonomous Electric Vehicle with Various Multi-Actuation Topologies.

Sensors 2024 Februrary 29
This paper presents the development of path-tracking control strategies for an over-actuated autonomous electric vehicle. The vehicle platform is equipped with four-wheel steering (4WS) as well as torque vectoring (TV) capabilities, which enable the control of vehicle dynamics to be enhanced. A nonlinear model predictive controller is proposed taking into account the nonlinearities in vehicle dynamics at the limits of handling as well as the crucial actuator constraints. Controllers with different actuation formulations are presented and compared to study the path-tracking performance of the vehicle with different levels of actuation. The controllers are implemented in a high-fidelity simulation environment considering scenarios of vehicle handling limits. According to the simulation results, the vehicle achieves the best overall path-tracking performance with combined 4WS and TV, which illustrates that the over-actuation topology can enhance the path-tracking performance during conditions under the limits of handling. In addition, the performance of the over-actuation controller is further assessed with different sampling times as well as prediction horizons in order to investigate the effect of such parameters on the control performance, and its capability for real-time execution. In the end, the over-actuation control strategy is implemented on a target machine for real-time validation. The control formulation proposed in this paper is proven to be compatible with different levels of actuation, and it is also demonstrated in this work that it is possible to include the particular over-actuation formulation and specific nonlinear vehicle dynamics in real-time operation, with the sampling time and prediction time providing a compromise between path-tracking performance and computational time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app