Add like
Add dislike
Add to saved papers

Phased Array Ultrasonic Method for Robotic Preload Measurement in Offshore Wind Turbine Bolted Connections.

Sensors 2024 Februrary 23
This paper presents a novel approach for preload measurement of bolted connections, specifically tailored for offshore wind applications. The proposed method combines robotics, Phased Array Ultrasonic Testing (PAUT), nonlinear acoustoelasticity, and Finite Element Analysis (FEA). Acceptable defects, below a pre-defined size, are shown to have an impact on preload measurement, and therefore conducting simultaneous defect detection and preload measurement is discussed in this paper. The study demonstrates that even slight changes in the orientation of the ultrasonic transducer, the non-automated approach, can introduce a significant error of up to 140 MPa in bolt stress measurement and therefore a robotic approach is employed to achieve consistent and accurate measurements. Additionally, the study emphasises the significance of considering average preload for comparison with ultrasonic data, which is achieved through FEA simulations. The advantages of the proposed robotic PAUT method over single-element approaches are discussed, including the incorporation of nonlinearity, simultaneous defect detection and stress measurement, hardware and software adaptability, and notably, a substantial improvement in measurement accuracy. Based on the findings, the paper strongly recommends the adoption of the robotic PAUT approach for preload measurement, whilst acknowledging the required investment in hardware, software, and skilled personnel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app