Add like
Add dislike
Add to saved papers

Proteomic Analysis Highlights the Impact of the Sphingolipid Metabolizing Enzyme β-Galactosylceramidase on Mitochondrial Plasticity in Human Melanoma.

Mitochondrial plasticity, marked by a dynamism between glycolysis and oxidative phosphorylation due to adaptation to genetic and microenvironmental alterations, represents a characteristic feature of melanoma progression. Sphingolipids play a significant role in various aspects of cancer cell biology, including metabolic reprogramming. Previous observations have shown that the lysosomal sphingolipid-metabolizing enzyme β-galactosylceramidase (GALC) exerts pro-oncogenic functions in melanoma. Here, mining the cBioPortal for a Cancer Genomics data base identified the top 200 nuclear-encoded genes whose expression is negatively correlated with GALC expression in human melanoma. Their categorization indicated a significant enrichment in Gene Ontology terms and KEGG pathways related to mitochondrial proteins and function. In parallel, proteomic analysis by LC-MS/MS of two GALC overexpressing human melanoma cell lines identified 98 downregulated proteins when compared to control mock cells. Such downregulation was confirmed at a transcriptional level by a Gene Set Enrichment Analysis of the genome-wide expression profiling data obtained from the same cells. Among the GALC downregulated proteins, we identified a cluster of 42 proteins significantly associated with GO and KEGG categorizations related to mitochondrion and energetic metabolism. Overall, our data indicate that changes in GALC expression may exert a significant impact on mitochondrial plasticity in human melanoma cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app